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✓ Funktioniert in großen Arealen

✓ Ist deutlich robuster bzw. kann deutlich robuster als
vergleichbare Technologien (z.B. Kamera-basiert) sein

✗ Wird beeinflusst durch nicht-lineare Effekte
à Distanzschätzung fehlerhaft

n Reflektionen

n Streuung

n Beugung

n Mehrwegeausbreitung
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✓ Ist deutlich robuster bzw. kann deutlich robuster als
vergleichbare Technologien (z.B. Kamera-basiert) sein

✗ Wird beeinflusst durch nicht-lineare Effekte

✗ Klassische Methoden skalieren nicht, da manuell optimiert
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✓ Funktioniert in großen Arealen

✓ Ist deutlich robuster bzw. kann deutlich robuster als
vergleichbare Technologien (z.B. Kamera-basiert) sein

✗ Wird beeinflusst durch nicht-lineare Effekte

✗ Klassische Methoden skalieren nicht, da manuell optimiert

✗ Lösung: Überbestimmtheit im System
à Installationen können teuer werden
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Funkbasierte Lokalisierung
Es ist 2021 – da macht man doch eh alles mit Machine Learning?!
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n Wir haben weder Katzenbilder noch Hundebilder, was tun wir also?

n Kanalimpulsantworten
à Real- und Imaginärwärte

2D Bild, 2 Kanäle, birdview [samples]

Imaginärwert [samples]Realwert [samples]
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n Lokalisierung

n Input: Vorverarbeitete Kanalimpulsantworten

n Output: Position des Senders

à Fingerprinting mit einem Convolutional Neural Network (CNN)

Seite 7

2D-CNN, z.B. GoogLeNet [1]

Bluetooth tracking using Deep Learning 5

noise which could potentially cause errors in classification. Next, the RSSI signals were

thresholded so that any signals below 100 RSSI would be set to zero. Then, all of the

signals for each second of data were normalized so that the maximum would be one and

the minimum would be zero. Finally, these normalized signals were mapped onto a 34

x 15 pixel grayscale image, as shown in figures 1B and 1C. The images mimic the true

node layout in order to create correct spatial relationships. This process generated 240

grayscale images for each tag in each zone, and these images were saved according to

tag, zone, and time.

2.3. Neural Network Architecture and Training

All neural networks were written and evaluated in Python 3 using both the

Tensorflow(Abadi et al. 2016) and Keras(Chollet et al. 2015) packages. The first network

design is shown in figure 3. The input layer is the 34 x 15 pixel grayscale image saved

from the data processing step. First, a 7x7 convolution layer with a rectified linear

unit (ReLU)(Glorot et al. 2011) activation function was used to create 32 feature maps.

This was followed by maximum pooling, reducing the size of the feature maps by a

factor of two in each dimension. This process was repeated with a 3x3 convolution layer

with the ReLU activation function and another max pooling layer. The last 32 feature

maps were flattened and were fully connected to 128 neural nodes. Finally, a layer with

softmax activation was employed to yield probabilities for each zone. For this CNN,

the maximum probability in this vector was used to determine the classification of the

image.

Figure 3. The structure of the convolutional neural network is displayed. Initially,
two convolution and max pooling layers are used. Then, the feature maps are flattened
and input into a fully connected network. Finally, a layer with the softmax activation
function is used to obtain the classification.

The above CNN was trained using 70% of the collected data and was tested using

30% of the data. This translated into using data from seven tags in each zone for

2D/3D-Position
Bild synchronisierter 

Kanalimpulsantworten

[1] Niitsoo et al.: Convolutional Neural Networks for Position Estimation in TDoA-Based Locating Systems. IPIN 2018.

Direkte Lokalisierung
Direkte Lokalisierung mittels Deep Learning
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Direkte Lokalisierung
Datensätze und Trainingsverfahren

Datensätze (typischerweise ca. 80% Training / 20% Test)
Meander (3D Pos.) Zig Zag (Segway) Production (human) NLOS (3D Pos.)

2D-Segway 3D-iGPS 3D-LEICA 3D-PosSys. L.I.N.K.
[21]

Messsysteme & Equipment
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Direkte Lokalisierung
Ergebnisse

n Mehrwegeszenario

n Modellbasiert vs. Datenbasiert

Mobile World Congress 2018.

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

Both test results are worse than the results that we achieve
using the naive sampling approach (which however, did not
check for generalization). But both results also show that our
model generalizes over the training data set. Hence, without
having seen the test data points in the training data set the
model produces viable position estimates that are even better
than the baseline optimization.

C. Architecture Evaluation

We modified popular architectures, i.e., AlexNet, Google-
LeNet, VGG-16 and VGG-19, according to Sec. V-C and
applied our correlation data to them. We further modified
the GoogleNet, see Tab. III. The -Re modification preserves
the CIRs further down the network (we modified the initial
convolutional and pooling layers). The Re-NoP preserves the
size of correlation image (by removing the pooling layer
between the first convolutional and normalization layer). We
also defined Small-Net as a cut-off from the GoogLeNet
architecture (we removed the inception layers between the root
and the first intermediate output).

Fig. 8 shows the CDFs of the network architecture trained
and tested according to the LS scheme. The graph also shows
the CDF of the Meander dataset according to Sec. VI-A with
gray dotted line with the GoogLeNet and its modification G-
Re-NoP as baseline for comparison. Table III specifies the
evaluated architecture parameters together with inference time
per 1000 samples, MAE and CEP. GoogLeNet and VGG-19
are on par especially on the CE95 level. Surprisingly, VGG-
16 outperforms VGG-19 with its modifications. AlexNet has
the worst overall performance compared to the other network
architectures (as it is comparably shallow but mostly fully
connected throughout the network).

The G-Re-Nop provides the best shaped CDF and MAE,
but its inference time is considerably higher than that of
others and also not feasible for practical applications of RLTS.
Comparing GoogLeNet and Small-Net, we can see that they
are on par w.r.t. MAE and CEP. However, Small-Net has nearly
4 times less parameters and a 6 times faster inference time.
The modified Small-Net-Re has a slightly better CDF than the
Small-Net, but with the cost of a larger number of parameters
(approx. 2 million vs. 11 million) which also results in higher
inference times.

Fig. 8. Cumulative Probability over the Meander dataset.

TABLE III
RESULTS AND PARAMETERS OF DIFFERENT ARCHITECTURES.

Network # Params Avg. FP (ms) MAE (cm) CEP
GoogLeNet 6,894,976 66.30 0.36m 0.31m
G-Re 7,422,336 130.68 0.33m 0.28m
G-Re-NoP 8,778,112 411.68 0.29m 0.26m
AlexNet 34,535,104 24.46 0.79m 0.71m
Small-Net 2,113,664 10.83 0.36m 0.32m
Small-Net-Re 11,938,944 37.70 0.34m 0.30m
VGG-16 39,883,904 158.24 0.36m 0.32m
VGG-19 45,192,320 197.18 0.38m 0.33m

D. Multipath Scenario

In reality there are a number of situations where the signal
is attenuated or deteriorated. Real world environments often
include obstacles that facilitate multipath propagation. To
see if our approach also manages to mitigate the effect of
multipath we recorded the Displaced Rectangles dataset.

The rectangles in Fig. 6 (d) illustrate the trajectory. We use
two of the three (red/left, green/right) rectangles for training
and the middle one (yellow) for testing. Fig. 5 shows how
we placed absorber walls on the right side of the dataset. The
perpendicular part on the rectangles’ right side heavily suffers
under multipath propagation. We ended up with a dataset of
90K CIR inputs and divided them such that the training set
consisted of 60K and testing set 30K correlations.

Fig. 9 left shows color-coded result of state-of-the-art
(SoTA) extended Kalman filter using a constant acceleration
motion model that uses ToAs and phase information as input.
Fig. 9 right shows the results of our method. We use the yel-
low/middle trajectory for testing and a median filter for post-
processing. We see that classic ToA-estimation and Kalman
post-processing heavily suffers from NLoS situations. While
ToA together with the transition matrices of the filter perform
very well on the left side (MAE 14.8cm, CEP 14.1cm, CE95
27.0cm in gray rectangle left) the highly non-linear effects on
the right side cannot be resolved (MAE 2,11m, CEP 1.45m,
CE95 5.29m in gray rectangle right). Our approach is slightly
worse in the LoS area with an MAE of 15.4cm, a CEP of
14.6cm and a CE95 of 28.3cm in the left rectangle. But most
impressive is the NLoS performance: with a CEP of 22.9cm
(MAE: 29.2cm, CE95: 68.3cm) our approach computes ac-
curate positions even under heavy multipath (overall MAE:
17.3cm, CEP: 13.7cm, CE95: 45.0cm). This shows that our
approach successfully resolves multipath propagation.

Fig. 9. Results with multipath scenarioKlassich mit KF DL (ohne KF!)

0.148 / 0.141 / 0.27

*MAE / CEP / CE95 in [m]

2.11 / 1.45 / 5.29

0.154 / 0.146 / 0.283

0.292 / 0.229 / 0.683

Insgesamt: 0.173/0.137/0.45
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Direkte Lokalisierung
Limitierung

Aber Moment mal….

n Modell-basierte Verfahren könnten doch (theoretisch)
auf ihre Umgebung optimiert werden

✗ Allerdings sind diese “optimalen” Konfigurationen
in anderen Umgebung u.U. nicht mehr ideal.

n Datengetriebene Verfahren benötigen „lediglich“ eine
repräsentative Menge an Trainingsdaten

n Die Positionsberechnung ist angepasst auf diese
spezifische Umgebung und Ausbreitungsbedingungen

✗ Eine Generalisierbarkeit auf andere Umgebungen ist nicht gewährleistet!

[2]

[1] taken from https://commons.wikimedia.org/wiki/File:Modern_warehouse_with_pallet_rack_storage_system.jpg
[2] taken from https://commons.wikimedia.org/wiki/File:Container_Terminal_Dortmund_12.01.2013.JPG

[1]

https://commons.wikimedia.org/wiki/File:Modern_warehouse_with_pallet_rack_storage_system.jpg
https://commons.wikimedia.org/wiki/File:Container_Terminal_Dortmund_12.01.2013.JPG
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Hybride Lokalisierungsverfahren
Potential & wo stehen wir?

n Unsere Ansätze bei hybriden Lokalisierungsverfahren brechen die Ende-zu-Ende-Kette auf:

n Schätzung von Kanalzuständen / Fehlercharakteristiken (E2E-Fokus: Position)

n Anreicherung von bestehenden Lokalisierungsansätzen (E2E-Fokus: Ersetzen v. Lok.-Ansätzen)

n Lokalisierung in gemischten Umgebungen (LoS / NLoS) (E2E-Fokus: NLOS)
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Live-Reference
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2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

Both test results are worse than the results that we achieve
using the naive sampling approach (which however, did not
check for generalization). But both results also show that our
model generalizes over the training data set. Hence, without
having seen the test data points in the training data set the
model produces viable position estimates that are even better
than the baseline optimization.

C. Architecture Evaluation

We modified popular architectures, i.e., AlexNet, Google-
LeNet, VGG-16 and VGG-19, according to Sec. V-C and
applied our correlation data to them. We further modified
the GoogleNet, see Tab. III. The -Re modification preserves
the CIRs further down the network (we modified the initial
convolutional and pooling layers). The Re-NoP preserves the
size of correlation image (by removing the pooling layer
between the first convolutional and normalization layer). We
also defined Small-Net as a cut-off from the GoogLeNet
architecture (we removed the inception layers between the root
and the first intermediate output).

Fig. 8 shows the CDFs of the network architecture trained
and tested according to the LS scheme. The graph also shows
the CDF of the Meander dataset according to Sec. VI-A with
gray dotted line with the GoogLeNet and its modification G-
Re-NoP as baseline for comparison. Table III specifies the
evaluated architecture parameters together with inference time
per 1000 samples, MAE and CEP. GoogLeNet and VGG-19
are on par especially on the CE95 level. Surprisingly, VGG-
16 outperforms VGG-19 with its modifications. AlexNet has
the worst overall performance compared to the other network
architectures (as it is comparably shallow but mostly fully
connected throughout the network).

The G-Re-Nop provides the best shaped CDF and MAE,
but its inference time is considerably higher than that of
others and also not feasible for practical applications of RLTS.
Comparing GoogLeNet and Small-Net, we can see that they
are on par w.r.t. MAE and CEP. However, Small-Net has nearly
4 times less parameters and a 6 times faster inference time.
The modified Small-Net-Re has a slightly better CDF than the
Small-Net, but with the cost of a larger number of parameters
(approx. 2 million vs. 11 million) which also results in higher
inference times.

Fig. 8. Cumulative Probability over the Meander dataset.

TABLE III
RESULTS AND PARAMETERS OF DIFFERENT ARCHITECTURES.

Network # Params Avg. FP (ms) MAE (cm) CEP
GoogLeNet 6,894,976 66.30 0.36m 0.31m
G-Re 7,422,336 130.68 0.33m 0.28m
G-Re-NoP 8,778,112 411.68 0.29m 0.26m
AlexNet 34,535,104 24.46 0.79m 0.71m
Small-Net 2,113,664 10.83 0.36m 0.32m
Small-Net-Re 11,938,944 37.70 0.34m 0.30m
VGG-16 39,883,904 158.24 0.36m 0.32m
VGG-19 45,192,320 197.18 0.38m 0.33m

D. Multipath Scenario

In reality there are a number of situations where the signal
is attenuated or deteriorated. Real world environments often
include obstacles that facilitate multipath propagation. To
see if our approach also manages to mitigate the effect of
multipath we recorded the Displaced Rectangles dataset.

The rectangles in Fig. 6 (d) illustrate the trajectory. We use
two of the three (red/left, green/right) rectangles for training
and the middle one (yellow) for testing. Fig. 5 shows how
we placed absorber walls on the right side of the dataset. The
perpendicular part on the rectangles’ right side heavily suffers
under multipath propagation. We ended up with a dataset of
90K CIR inputs and divided them such that the training set
consisted of 60K and testing set 30K correlations.

Fig. 9 left shows color-coded result of state-of-the-art
(SoTA) extended Kalman filter using a constant acceleration
motion model that uses ToAs and phase information as input.
Fig. 9 right shows the results of our method. We use the yel-
low/middle trajectory for testing and a median filter for post-
processing. We see that classic ToA-estimation and Kalman
post-processing heavily suffers from NLoS situations. While
ToA together with the transition matrices of the filter perform
very well on the left side (MAE 14.8cm, CEP 14.1cm, CE95
27.0cm in gray rectangle left) the highly non-linear effects on
the right side cannot be resolved (MAE 2,11m, CEP 1.45m,
CE95 5.29m in gray rectangle right). Our approach is slightly
worse in the LoS area with an MAE of 15.4cm, a CEP of
14.6cm and a CE95 of 28.3cm in the left rectangle. But most
impressive is the NLoS performance: with a CEP of 22.9cm
(MAE: 29.2cm, CE95: 68.3cm) our approach computes ac-
curate positions even under heavy multipath (overall MAE:
17.3cm, CEP: 13.7cm, CE95: 45.0cm). This shows that our
approach successfully resolves multipath propagation.

Fig. 9. Results with multipath scenario
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Figure 13. Distributed CNN.

6.6. Multipath Scenario

In reality there are many situations where the signal is attenuated, blocked or deteriorated. Real
world environments often include scattering objects and obstacles that cause multipath propagation
and blockage of the LoS signal. In order to see if our approach also manages to mitigate the effect of
multipath we recorded the Displaced Rectangles dataset.

The rectangles in Figure 7d illustrate the trajectory. We use two of the three (red/left, green/right)
rectangles for training and the middle one (yellow) for testing. Figure 6 shows how we placed absorber
walls on the right side of the dataset. The perpendicular part on the rectangles’ right side heavily
suffers from multipath propagation and obstructions. We ended up with a dataset of 92,724 CIR inputs
and divided them such that the training set consisted of 62,724 and testing set of 30,000 correlations.

Figure 14 on the left shows the color-coded result of state-of-the-art (SoTA) extended Kalman filter
using a constant acceleration motion model that uses ToAs and phase information as input. Figure 14
on the right shows the results of our method. We use the yellow/middle trajectory for testing and a
median filter for post-processing. We observe that classic ToA estimation and Kalman post-processing
heavily suffers from NLoS situations. While ToA estimation together with the transition matrices
of the filter perform very well on the left side (an MAE of 0.15 m, a CEP of 0.14 m, CE95 0.27 m in
gray rectangle left) the highly non-linear effects on the right side cannot be resolved (MAE 2.11 m,
CEP 1.45 m, CE95 5.29 m in gray rectangle right). Our approach is slightly worse in the LoS area with
an MAE of 0.15 m, a CEP of 0.15 m and a CE95 of 0.28 m in the left rectangle due to the absence of a
motion model. But most impressive is the NLoS performance: with a CEP of 0.23 m (MAE: 0.29 m,
CE95: 0.68 m) our approach computes accurate positions even under heavy multipath (overall MAE:
0.17 m, CEP: 0.14 m, CE95: 0.45 m). We can hypothesize that the MPCs in the signals of the NLoS
scenario can be viewed as virtual anchors or stations, which could be used for more precise position
estimation [81–83]. This experiment shows that our approach efficiently handles the NLoS scenario.
However, one limitation is that our approach (as any fingerprinting-based localization techniques) is
sensitive to dynamic objects in the environment (as these change the multicast profile). In the future,
it is worth to consider scenarios with moving objects to see how they affect the position estimation
accuracy and long-term stability of our model.
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Fig. 5. PDFs and joint PDFs of DS and KF for the 3GPP (TR38.901) scenarios: InF, InO, UMa, UMi, and QUADRIGA Ind.

the CIR properties within a given environment, we can also
control the probability of the environment. This enables the
selection of the training dataset according to the applications
and the expected environmental conditions. A DL model
trained on the entire training data may avoid or minimize
scenario-specific training during a system deployment phase.

B. Channel Modelling

We generated synthetic data using the geometry-based
stochastic channel model QUADRIGA [51]. QUADRIGA
consists of two main components: A stochastic component,
that creates a random propagation environment (LSPS, e.g.,
delay and angular spread) and calculates random 3D positions
of scattering clusters within, and a deterministic part, that
describes the interaction of transmitter and receiver with this
random environment. Scatter clusters are fixed and the tem-
poral development of the radio channel is deterministic. The
QUADRIGA model was validated based on real measurements
in a coherent LTE Advanced Testbed [51]. Besides the SSP
and LSP configurations, we also provide the network layout,
i.e., the positions of the basestations, antenna configurations,
downtilts, the positions and trajectories of the transmitters and
receivers as well as the propagation scenarios as configuration
variables for QUADRIGA. From there, QUADRIGA calcu-
lates the channel coefficients, i.e., CIR, FDPOA, and TOA.1

C. Datasets

We generated our simulation data for various cases that are
applicable in practice, i.e., we differentiated LOS, OLOS, and
NLOS conditions with different KF, DS, and SNR statistics of
the MPCS to generate CIRS and corresponding TOAS. These
channel properties depend on the distance to reflecting objects,
the number of relevant reflectors, and the objects around the
transmitter. QUADRIGA models them statistically to describe
these statistical properties of the CIR. The statistical prop-
erties depend on the deployment scenarios and the receiving
conditions. In a final step, we resampled each CIR from 60
to 120 components to increase its resolution (see Sec. IV-D).

1Note that QUADRIGA divides the carrier signal into two parts during
demodulation. One part is executed with the original phase position (in-phase,
I) and describes the real part of the signal in the form of an amplitude.
The second part is executed with a reference frequency that is 90° out of
phase (quadrature, Q) and is also an amplitude that represents the associated
imaginary part. This procedure takes into account the values of the LSPS and
calculates the path powers and the path delays of the MPCS.

3GPP [1] defines reference channel models that describe
parameter sets that define the statistical properties of corre-
sponding CIRS with probability density functions (PDFS)
for DS and KF to represent the properties of a random
environment. A detailed overview of the statistics for KF and
DS are shown in Figs. 5a and 5b. Since KF and DS are
typically correlated, we visualize their joint PDFS with pseudo
3D plots, wherein the probability is represented by the color,
see Figs. 5c and 5d. In the following we describe urban macro
(UMA), urban micro (UMI), AWGN, and indoor scenarios
with distributions of µ(KF ), µ(DS), their �, and SNR.

Urban. The TR38.901 [1] provides parameter sets for urban
scenario assuming high basestation towers, i.e., urban macro
(UMa) with high DS, areas with narrow streets, typically with
dense deployments of the basestations, i.e., urban micro (UMi)
with medium DS, and rural areas. Fig. 5c visualizes the map
that covers the channel characteristics of UMi.

Indoor. To address typical indoor industrial applications, we
use multiple indoor factory InF datasets with low DS [52],
whereas for open environments we include more data accord-
ing to indoor open office, defined by TR38.901 [1]. For indoor
applications parameter sets for typical office building (InO)
or factories (InF) are available. Fig. 5d visualizes the map
that covers the channel characteristics of InF. as there is no
LOS components embedded in NLOS simulations, the delay
in the FDPOA mainly depends on the DS statistics. Instead,
LOS components are embedded in the OLOS scenario, but
the MPCS have significantly reduced power. Fig. 6a shows
the complete map of the channel characteristics UMa, UMi
and Indoor (Inf and InO).

Real-World. We generated similar maps for our real mea-
surement data, see Fig. 6b. We derived the statistics by

UMi
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(a) Simulated data.
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(b) Real data.

Fig. 6. Distribution of channel characteristics for simulated and real data. The
rectangles and circles classify UMi, UMa, and Indoor models spatially in this
world map. Note that rectangles represent the area covered by the parameters
µ(KF) and µ(DS), and the circles represent their corresponding �.
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Dr.-Ing. Christopher Mutschler

christopher.mutschler@iis.fraunhofer.de
+49 (0) 911 / 58061-3253

Vielen Dank!

Sprechen Sie uns an!


