5G TESTBED-INDUSTRIE 4.0

INDUSTRIEANWENDUNGEN MIT 5G TESTEN

Martin Tittel | Ralph Dümmler | Fraunhofer IIS | 3. Februar 2021

Anforderungen an die Funktechnik für Fabrik- und Prozessautomatisierung

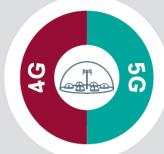
- Dienstgüte (QoS): Unterstützung verschiedener Datenübertragungsmodi mit
 - Ende-zu-Ende-Latenz: 0,5 ms bis 500 ms
 - Datenrate: Bis hin zu mehreren Gbit/s
 - Zeitsynchronisation: Mit bis zu 1 μs Genauigkeit
- **Verlässlichkeit**: Dienstverfügbarkeit und Zuverlässigkeit
- Nahtlose Integration mit drahtgebundenen und drahtlosen Technologien
- Sicherheit: Verfügbarkeit, Integrität und Vertraulichkeit
- Slicing (Netztrennung), Isolation
- Positionsgenauigkeit: Zwischen 0,2 m und 10 m
- Effizienz: Spektrum, Energie und Protokoll
- Einfacher Betrieb und Wartung

Einsatzbereiche und zugeordnete Anwendungsbeispiele

	Motion control	Control-to-control	Mobile control panels	Mobile robots	Massive wireless sensor networks	Remote access and maintenance	Augmented reality	Closed- loop process control	Process monitoring	Plant asset management
Factory automation	Х	Х		Х	Х					
Process automation				Х	Х			Х	Χ	Х
HMIs and production IT			Х				Х			
Logistics and warehousing		Х		Х						Х
Monitoring and maintenance				Х	Х	Х	Х			

Source: 5G-ACIA / ZVEI

Mobilfunktechnik für Industrieanwendungen


- 4G (mit LTE-M und NB-IoT) ist für einige Anwendungen ausreichend
- 5G erhöht die Anzahl der Nutzungsmöglichkeiten für Industrie 4.0 deutlich, komplexere und anspruchsvollere Lösungen werden möglich
- Speziell in Deutschland steht für private 5G-Netze ein **dediziertes** Frequenzband zur Verfügung
- Basis für viele Anwendungen in der intelligenten Produktion sind außerdem funkgestützte Real-Time **Location Services (RTLS)**

4G Asset Tracking LTE-M and NB-IoT are powering new asset tracking applications Augmented Reality (AR) AR glasses for two-way telepresence and streaming of instructions and barcode scanning **Automated Guided Vehicles (AGVs)** AGVs can run on LTE, circumventing handover issues experienced by Wi-Fi Remote Machine/Vehicle Control LTE can enable some remote machine control use cases **Sensors for Process Monitoring** uploaded via 4G

Sensor data for Condition-Based Monitoring (CBM) can be

Asset Tracking Collaborative Robots (Cobots) CBM

Both Enable:

Digital Twins Edge Computing Predictive Maintenance Wearables

5G

Real-Time HD Video Transmission & Analytics

5G eMBB and URLLC can ensure real-time streaming of HD images, which can be processed and analyzed with Al at the edge

Real-Time Closed-Loop Robotic Control

Sensor data would be able to affect robotic control in real time, increasing safety, precision, and autonomy

Real-Time Edge Analytics

Data are fed to the edge in real time, enabling real-time actionable insights and prescriptive maintenance

Simultaneous Localization and Mapping (SLAM)

5G and edge computing will bring autonomous vehicles to the next Society of Automotive Engineers (SAE) level

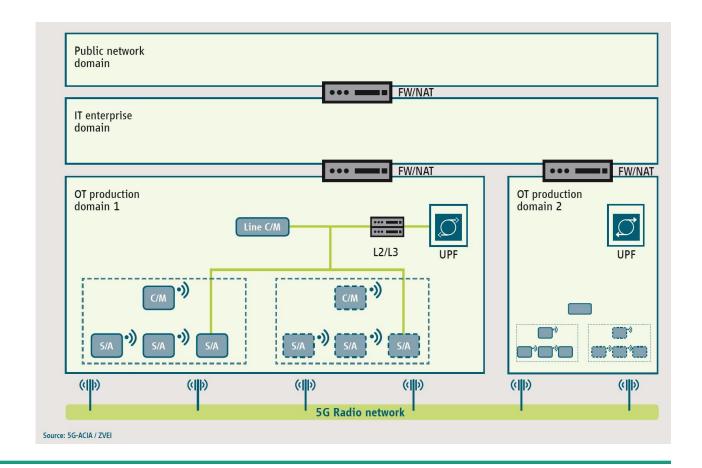
High-Speed Wireless Data Download

Software downloads and updates for machinery and production vehicles can be done wirelessly and faster

Remote Emergency Stop

5G URLLC can ensure wireless remote emergency stops that can be enabled wherever the private network is deployed

Source: ABI Research


Bereitstellungsmodell für 5G in der Industrieproduktion

Vor allem aus den Anforderungen der Industrie

- dediziertes, exklusives Frequenzband
- deterministische Vernetzung
- Integrität der übertragenen Daten

ergibt sich als optimales Bereitstellungsmodell das

- "Standalone non-public network"
 - Keine Abhängigkeit von öffentlichen Netzen, alle Komponenten des 5G Netzes auf dem Werksgelände
 - Beste Latenzeigenschaften und höchste Verfügbarkeit
 - Ermöglicht unternehmenskritische
 Anwendungsfälle wie Closed-Loop Control oder sicherheitskritische Nutzungen

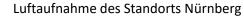
Das 5G Testbed-Industrie 4.0: Standorte und Abdeckungsbereiche

Geplante Abdeckung des 5G-Campusnetzes:

- **Site Nürnberg** (Nordostpark):
 - L.I.N.K.-Testzentrum (Industrial Indoor Area)
 - mit Außenbereich
 - Besucherbereich und Büros (zwei Stockwerke)
- **Site Erlangen** (Tennenlohe):
 - Außenbereich (Sendemast)
 - Besucherbereich
 - ausgewählte Labore
 - Parkhaus Frauenweiherstraße (geplant)
- Testmöglichkeiten für Kunden sind im L.I.N.K.-Testzentrum mit Außenbereich und im geplanten Parkhaus vorgesehen

Site Nürnberg

Site Erlangen


Technische Merkmale

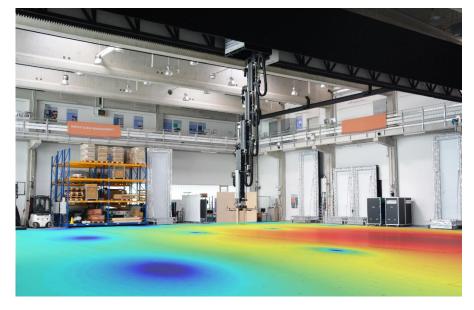
- Folgende Merkmale, realisiert mit kommerziell verfügbarer 5G-Funktechnik, zeichnen das Testbed aus:
 - **5G Stand-alone (SA) Core** (Cloud-Native, Microservice- und Container-basiert, offene Schnittstellen, komplett On-Premise)
 - Fähigkeiten zur Bereitstellung von Dienstprofilen: Quality of Service durch Priorisierung von Teilnehmern und Datenverkehr mit **3GPP-konformem Netzwerk-Slicing**
 - Cloud & Edge Computing Hosts für benutzerdefinierte Anwendungen und User Plane Functions (UPFs) mit Echtzeit-Zugriff auf das 5G-Netz
 - **5G SA-NR RAN** mit **Open RAN-Schnittstellen**, virtualisiert auf generischer Hardware (COTS)
 - 15 Stück 5G Radio Units (erste Phase), im Endausbau mehr als 50 Radio Units
 - Zwei Frequenzbereiche: FR1 (3,7 3,8 GHz im Frequenzband der "VV Lokales Breitband" der BNetzA) und FR2 (mmWave; ca. 26 GHz, 400 MHz Kanalbandbreite)
 - Auch im Innenbereich: Massive MIMO Antennen (64T64R) mit Beamforming-Unterstützung
 - **Präzise Zeitsynchronisation** ermöglicht hochgenaue RTLS, Time Sensitive Networking (TSN) und niedrig-latente Übertragung

Funkzugangsnetz (RAN)

- Gesamter Abdeckungsbereich (beide Standorte):Ca. 22.000 qm
- L.I.N.K.-Halle (45 x 31 x 9 m):
 8 Panel-Antennen (4T4R) in zwei verschiedenen Höhen und
 2 mMIMO-Antennen (64T64R) für FR1,
 6 mMIMO-Antennen (32T32R) für FR2
- Bürogebäude N: 20 Panel-Antennen (4T4R) für FR1 auf 2 Stockwerken
- Außenbereich N:4 mMIMO-Antennen (32T/32R) für FR1
- Site Erlangen (nur FR1):
 6 Panel-Antennen (4T4R) indoor
 2 + 5 mMIMO-Antennen (32T32R) am Sendemast
 bzw. im Parkhaus

Emulation von Industrieumgebungen

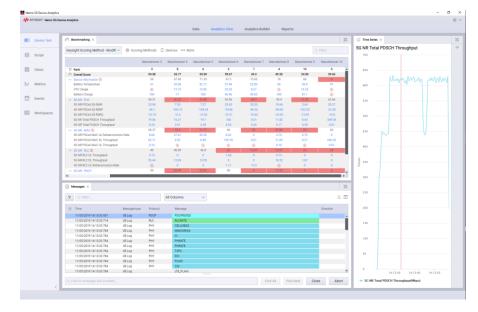
Die Industrial Indoor Area des 5G Testbed ist ausgerüstet mit


- mobilen Funk-absorbierenden oder reflektierenden Stellwänden
- Traversen zur Emulation von Kranbahnen oder Hängeförderern
- optischen Referenzsystemen für Position und Ausrichtung
- unterschiedlich eingeteilten Referenzböden
- dem **3D-Positioniersystem** (3D-Raum ca. 38 x 22 x 7 m)
- fahrerlosen Transportsystemen
- verschiebbaren Paletten-Regalen
- Gabelstapler und anderen Flurförderzeugen
- Laderampen und Rolltoren
- LKW mit Wechselbrücken
- und vielem mehr...

L.I.N.K.-Halle

Mögliche Tests (1)

- Funktionale Tests: Überprüfen einer bestimmten Funktionalität sowohl Ende zu Ende als auch gegen Tester oder Referenzsysteme.
- **Development Testing**: Durch den Zugang zu allen Trace- und Debug-Informationen im eigenen 5G-Netz kann Hilfe beim Finden von Fehlern oder bei der Systemoptimierung angeboten werden.
- Performance Testing: In den Bereichen Kommunikation und Positionsbestimmung wird die Leistungsfähigkeit von Systemkomponenten oder kompletten Lösungen überprüft. Als Referenz steht u.a. das 3D-Positioniersystem zur Verfügung.
- Stabilitätstests oder Dauertests: Es werden automatisiert verschiedene Szenarien in einer definierten Abfolge und Anzahl wiederholt.



3D-Positioniersystem in der L.I.N.K.-Halle

Mögliche Tests (2)

- Interoperabilitätstests: Hier können Produkte/Prototypen auf Funktion speziell in einem Open RAN 5G-Netz getestet werden.
- **Drive Tests**: Innerhalb der Halle und des Außenbereichs können Mobilitätstests durchgeführt werden. Durch die begrenzte räumliche Situation allerdings nicht mit hohen Geschwindigkeiten.
- Cell Edge-Szenarien: Dies sind Tests an der Grenze der Funkversorgung.
- Massive Testing: Hier werden sehr viele (emulierte) Endgeräte gleichzeitig betrieben, um die Robustheit einer Gesamtlösung zu testen.

Nicht angeboten werden folgende Tests: Konformitätstests, Typzulassungen, quantitative/kalibrierte EMV/ESD Tests, Roaming- Tests ins öffentliche Netz, Drive-Tests außerhalb unseres Geländes

Keysight Technologies: Benchmark für 5G Endgeräte

Arten von Testkampagnen

Bereitstellung der Testumgebung

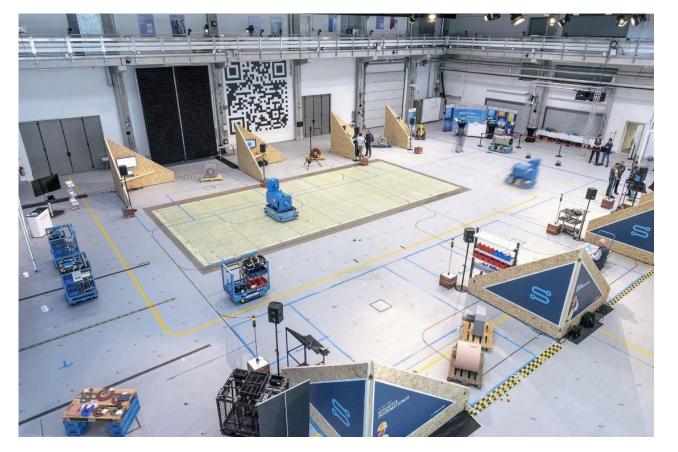
Fraunhofer IIS stellt die Testumgebung und der Kunde macht selbständig seine Tests. Das IIS stellt die Infrastruktur und die benötigte Konfiguration zur Verfügung.

Unterstütztes Testen

Fraunhofer IIS berät den Kunden über mögliche und sinnvolle Szenarien und unterstützt ihn im Testbed aktiv.

Full Service-Testauftrag

Der Kunde beauftragt beim Fraunhofer IIS eine komplette Testkampagne. Das IIS definiert in Abstimmung mit dem Kunden die Testinhalte, führt die Tests aus und beurteilt die Ergebnisse.



Source: fotolia.com

Verfügbarkeit des Testbed

- **Ab wann** kann das Testbed von der Industrie genutzt werden?
 - Entwicklungspartnerschaften sowie Forschungsprojekte aus den Themenbereichen Kommunikation und Positionierung sollen ab Frühjahr 2021 Zugang zum Testbed haben
 - Der »produktive« Betrieb wird ab Sommer 2021 für die L.I.N.K.-Halle und FR1 angestrebt
 - Die weiteren Ausbauphasen (Outdoor, FR2, Massive MIMO, Parkhaus Erlangen) werden bis Ende 2022 abgeschlossen

http://www.open-ran-campus.de/

Prototyp einer zellenbasierten Fertigung in der L.I.N.K.-Halle

FRAUNHOFER-INSTITUT FÜR INTEGRIERTE SCHALTUNGEN IIS KONTAKT

Martin Tittel | Ralph Dümmler | 5G Testbed - Industrie 4.0

http://www.open-ran-campus.de/

Dipl.-Ing. Martin Tittel
Bereich Lokalisierung und Vernetzung (LV)

Fraunhofer-Institut für Integrierte Schaltungen IIS

Nordostpark 84 | 90411 Nürnberg

Phone +49 (0) 911 58061 - 9420 E-Mail martin.tittel@iis.fraunhofer.de Dipl.-Ing. (FH) Ralph Dümmler

Bereich Kommunikationssysteme (KS)

Fraunhofer-Institut für Integrierte Schaltungen IIS

Am Wolfsmantel 33 | 91058 Erlangen Phone +49 (0) 172 8100 248

E-Mail <u>ralph.duemmler@iis.fraunhofer.de</u>

© Victoria - Fotolia.com

